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Abstract— This study assesses various state-of-charge (SoC) 

estimation methods for lithium-ion batteries, focusing on a 

Samsung 30Q cell under dynamic loads. It compares four 

techniques: a naïve weighted sum, a weighted derivative method 

based on voltage curve slopes, an Extended Kalman Filter (EKF) 

for nonlinear dynamics, and a fuzzy logic system for managing 

sensor noise and uncertainties. Findings indicate that while the 

naïve and weighted derivative methods perform well under 

constant loads, they falter in variable conditions. Conversely, the 

EKF and fuzzy logic approaches excel, offering robust and reliable 

SoC estimates. This highlights the need for advanced SoC 

estimation methods to enhance battery management system 

functionality and safety in diverse applications, encouraging 

further development of hybrid strategies. 

 

Index Terms—Battery management systems, Electric 

vehicles, Lithium batteries, State estimation 

I. INTRODUCTION 

Lithium-ion batteries serve as the powerhouse for numerous 

applications, from portable electronics to electric vehicles, 

emphasizing the critical need for accurate state of charge (SoC) 

estimation. The SoC, representing the remaining capacity of the 

battery, is pivotal for optimizing performance, prolonging 

battery life, and ensuring safe operation.  

Voltage maps provide a snapshot of the battery's SoC by 

analyzing the voltage response during charge and discharge 

cycles. This method exploits the voltage dependence of the 

battery's electrochemical reactions, offering insights into its 

energy state. However, voltage-based estimation is susceptible 

to inaccuracies stemming from temperature variations, load 

fluctuations, and internal resistance changes. These limitations 

can compromise the reliability and robustness of its SoC 

estimation, particularly in dynamic operating conditions. 

On the other hand, coulomb counting relies on integrating the 

current flowing in and out of the battery over time to track SoC 

changes. This method offers simplicity and low computational 

overhead, making it attractive for practical implementations. 

Nonetheless, coulomb counting suffers from cumulative errors, 

primarily due to current measurement inaccuracies, electrode 

polarization effects, and capacity degradation over the battery's 

lifespan. These factors undermine its precision, especially 

during prolonged usage or high levels of sensor noise. 

Recognizing the inherent strengths and weaknesses of 

voltage maps and coulomb counting, the fusion of these 

methodologies aims to mitigate the shortcomings of individual 

methods. 

In literature, a significant amount of work has gone into 

different fusion methods for SoC estimation. One study [1] 

compared a variety of different methods of SoC estimation. It 

concluded that, while Unscented Kalman Filters (UKFs) do 

provide slightly better SoC estimates, Extended Kalman Filters 

still have strong performance and “the estimation effect of the 

EKF algorithm is perfectly acceptable” [1].  

 Another journal that was considered investigated a method 

of fusing multiple voltage readings from the same pack [2]. This 

applies to the desired use case for this report but was never 

implemented due to scope issues. 

One additional journal that was considered specifically 

detailed the implementation of an EKF for SoC estimation [3]. 

This journal gives an overview of specific EKF derivation and 

will be referenced in detail further in the report. 

Finally, a journal regarding equivalent circuit modelling for 

lithium-ion battery pack SoC estimation was referenced to 

develop the model for the system used to test this report [4].  

II. BACKGROUND KNOWLEDGE 

A. Lithium-Ion Battery Modelling 

In battery management systems (BMS), accurate estimation 

of state of charge is paramount for ensuring optimal 

performance, longevity, and safety of lithium-ion batteries. 

One widely adopted approach involves employing 

mathematical models to simulate battery behavior and predict 

its dynamic response under varying operating conditions. 

Among these models, the 1RC (one resistor and one capacitor) 

equivalent circuit model stands out for its simplicity, 

versatility, and effectiveness in capturing the electrochemical 

dynamics of lithium-ion cells which is shown in Figure 1. 

 
Figure 1. Circuit schematic of 1-RC battery model. 

One crucial aspect addressed by the 1RC model is the 

discrepancy between the measured cell voltage and the relaxed 

cell voltage under no load conditions. When a battery is 
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discharged, its voltage sags from its no load state due to 

polarization effects, concentration gradients, and surface 

reactions. However, when the battery is left to rest without any 

external load, it tends to relax towards its intrinsic 

electrochemical equilibrium, leading to a different voltage 

level known as the relaxed cell voltage. By feeding the 1RC 

model into voltage map SoC estimations, a BMS can 

effectively account for the difference between measured cell 

voltage and relaxed cell voltage. This allows for more accurate 

tracking of the battery's true SoC when using voltage maps 

and facilitates proactive management strategies to optimize 

performance and prevent premature degradation.  

B. Samsung 30Q Battery Pack  

The Samsung 30Q is a Lithium Nickel Manganese Cobalt 

Oxide battery with a maximum charge voltage of 4.2 Volts, 

minimum discharging voltage of 2.5, and a capacity of 3000 

milliampere-hours (mAh). To meet the energy requirements of 

larger-scale applications, such as electric vehicles or stationary 

energy storage systems, individual lithium-ion cells are often 

combined into battery packs through series and parallel 

connections. For this research study, a 20s6p (20 series cells 

each with 6 cells in parallel) configuration has been used to 

create a battery pack with a total capacity of 64800 Coulombs. 

C. Extended Kalman Filter for Sensor Fusion 

The Extended Kalman Filter (EKF) extends the basic 

Kalman Filter to handle nonlinear dynamics and non-Gaussian 

noise distributions. Despite its limitation of linear 

approximations, the EKF remains a versatile and widely used 

tool for state estimation in nonlinear systems, offering 

significant improvements over simpler techniques. 

D. Fuzzy Logic for Sensor Fusion 

Fuzzy logic offers a flexible and intuitive framework for 

handling uncertainty and imprecision in decision-making and 

control systems. The advantage of fuzzy logic fusion allows 

for nonlinear mapping between noisy sensor inputs and fused 

outputs, enabling the modeling of complex relationships and 

interactions between sensors in multisensory systems. 

III. METHOD AND MATERIALS 

A. 1RC Model System Identification 

Given the circuit model in Figure 1, the s-domain transfer 

function is derived as shown below. 

𝑉𝑜(𝑠) = 𝑉𝑖(𝑠) + 𝐼(𝑠)(𝑅0 +
1

𝑠𝐶 +
1

𝑅𝑝

) 

Given the transfer function step inputs are applied to 

attempt to fit the data to the derived model to extract bulk 

parameters 𝑅0, 𝑅𝑝, 𝐶. The time domain solution for a step 

input to the transfer function is as follows. 

𝑉𝑜(𝑡) = 𝑉𝑖(𝑡) + 𝐼(𝑅0 + 𝑅𝑝 (1 − 𝑒
−

𝑡
𝑅𝑝𝐶)) 

Applying an actual step current input yields the voltage 

response as shown in Figure 2, this response roughly matches 

the expected time domain solution, a sharp spike then 

exponential recovery. 

At 𝑡 = 0 of the step input the parameter 𝑅0 is extracted, as 

𝑉𝑜 − 𝑉𝑖 = 𝐼𝑅0. MATLAB is then used to fit a curve to the 

exponential recovery curve, this gets an approximate 𝑅𝑃, 𝐶. 

The values are found to be as follows: 

 

𝑅0 = 3.1𝑚Ω 

𝑅𝑃 = 1.5𝑚Ω 

𝐶 = 9646.3𝐹 

 
Figure 2. Open loop step current input and measured voltage 

response. 

The derived resistance values nominally make sense, the 

DC internal resistance of the cells is measured to be ~30𝑚Ω 

each, 6 in parallel is ~5𝑚Ω. 

The derived capacitance value is very large and its actual 

value in Farads is somewhat meaningless, it is simply a proxy 

to emulate reactive behavior. It is very large due to the long 

time constant (~15 seconds) and very low resistance of 𝑅𝑃. 

B. System Emulation 

Given those derived parameters, an emulation model is 

developed. A time domain approximation for the 1-RC circuit 

model is found as follows. 

𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑡) = 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑡) + 𝐼(𝑡)𝑅0 + 𝑉𝐶(𝑡) 

𝑉𝐶(𝑡) =
1

𝐶
∫ 𝐼(𝑡) −

1

𝑅𝑃

𝑉𝐶(𝑡) 𝑑𝑡 

C. Model Results 

Implementing the system emulator in MATLAB and 

running it on the data yields a better estimated cell voltage. 

Figure 3 shows a correct cell voltage at a constant 10A 

discharge, and Figure 4 shows corrected cell voltage at a 

constant 30A discharge. 

As it can be seen in the constant discharge data, the 

corrected cell voltage data has a significantly smaller drop 

than the raw data. Additionally, the adjusted cell voltage 

converges to the measured cell voltage at no load indicative of 

a correct model. 

The adjusted cell voltage decreases quasi-linearly which 

also matches up with a constant discharge. 
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Figure 3. Corrected cell voltage at a 10A constant discharge using 1-

RC model. 

 
Figure 4. Corrected cell voltage at a 30A constant discharge using 1-

RC model (there is a small blip in the data that is likely a firmware 

bug). 

D. Data collection 

The data collected for this report involves a custom BMS 

equipped with 20 16-bit analog-to-digital converters (ADC) 

that monitor cell voltages at 10Hz and a 24-bit ADC that 

measures current at 1000Hz. As seen in Figure 5, the battery 

was connected to a bidirectional power supply which drew 

varying loads from the battery pack. 

 

 
Figure 5. Data Collection Setup 

To collect data for the discharge percentage to cell voltage 

curve, a low current draw was used to minimize the effects of 

internal resistance. Figure 6 serves as the basis for voltage 

based SoC estimation. 

  

 
Figure 6. Experimental discharge percentage to voltage map. 

E.  System Overview 

The block diagram of the planned fusion process for this 

system is shown in Figure 7 below. 

 
Figure 7. System block diagram. 

 

The SoC for all 20 parallel groups of batteries is calculated 

using various methods explored in this report. The cell with the 

lowest SoC is then used as the SoC of the battery pack to ensure 

safe operation of the battery. Over-discharge of cells can lead 

to thermal runaway and catastrophic failure. 

IV. RESULTS 

Four approaches are used to estimate the SoC of the battery 

pack which are evaluated against each other to determine the 

most accurate method for dynamic load cases. 

A. Battery Model 

To validate the accuracy of the battery model in varying 

load cases, the measured and modelled battery voltages are 

plotted in Figure 8. These changes in measured cell voltage 

are indications of changing current loads which are corrected 

by the model leading to the steady drops in voltage over time 
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as was observed with the constant current based training data. 

Furthermore, long pauses of several minutes were introduced 

to the test data’s varying load cases to demonstrate that the 

battery model converged to the relaxed cell voltage.  

 
Figure 8. Results of the battery correction model over a full 

discharge cycle. 

B. Naïve Approach 

A simple solution to fusing the SoC values from the coulomb 

counting method and the voltage to SoC method is to use a 

weighted sum. The final fused state-of-charge for a cell is 

calculated as follows: 

𝑆𝑂𝐶𝑓𝑢𝑠𝑒𝑑 = α ∗ 𝑆𝑂𝐶𝑣𝑜𝑙𝑡𝑎𝑔𝑒 + (1 − α) ∗ 𝑆𝑂𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

Where 𝛼 is a weight from zero to one set by a piecewise 

function that modulates the relative importance of the voltage-

based solution when compared to the coulomb counting 

approach. Figure 9 shows this piecewise weighting map: 

 
Figure 9. Piecewise function mapping input SoC estimates from the 

voltage map to weights for fusion. 

The function in Figure 9 was constructed to emphasize how 

voltage SoC estimates need to be weighed heavier near the 

extreme ends to avoid operating the cell outside its voltage 

limits. Furthermore, the discharge to voltage map seen in Figure 

6, does not demonstrate high rates of change in the linear region 

which means sensor noise on voltage measurements can greatly 

vary the estimated SoC. This is why a significant weight (70%) 

is assigned to coulomb counting from 30% to 70% as it does 

not face the same challenges. To avoid abrupt jumps in the 

estimated SoC, ramps are used in the piecewise function to 

smoothen the transition. 

As an initial test for this method’s performance, a constant 

0.2C discharge is used for validation. Figure 10 shows the SoC 

estimates from only voltage estimates (blue), coulomb counting 

estimates (red), and the fused estimates (orange). 

 
Figure 10. Naïve weighting for SoC estimations during a 0.2C 

discharge cycle. 

 Figure 11 shows current estimation as a perfect line which 

is expected for the constant current discharge case. The fused 

estimate performs well and is linear with some ripples at the 

beginning and end of the cycle, indicating that the voltage 

estimate takes precedence over the current estimate. 

 
Figure 11. Naïve weighting for SoC estimations during a 0.2C 

discharge cycle, only showing voltage estimations. 

C. Weighted Derivative Approach 

To improve upon the naïve approach, the weights can be 

determined based on the slope of the SoC to voltage curve. In 

Figure 6, the cell voltage decreases slowly from 0% to 20% of 

the cycle, then decreases linearly from 20% to 60%, and from 

80% to 100% it starts to drop faster near the end of the discharge 

cycle. This method uses the derivative from the linear region’s 

slope to assign higher weights to the voltage based SoC 

estimation. 

First, the discharge to cell voltage curve of Figure 6 is fit to 
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a 9th order polynomial which is the lowest order polynomial that 

captures the tails of the curve. 

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑡𝑜_𝑣𝑜𝑙𝑡𝑎𝑔𝑒

= −1.0763 ∗ 10−15𝑑9 + 4.792 ∗ 10−13𝑑8

− 8.9621 ∗ 10−11𝑑7 + 9.0769 ∗ 10−9𝑑6

− 5.3899 ∗ 10−7𝑑5 + 1.889 ∗ 10−5𝑑4

− 3.7013 ∗ 10−4𝑑3 − 0.0035𝑑2 − 0.0172𝑑
+ 4.0627 

The linear region of this curve has a slope of -0.0088. A 

weighting function was experimentally found such that it 

weighed coulomb counting slightly higher than the voltage 

map estimates in the linear region. and gave significant 

importance to voltage maps around the extremities: 

𝑣𝑜𝑙𝑡𝑎𝑔𝑒_𝑚𝑎𝑝_𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 = 2(𝑠 − 0.0025)
1

3 + 0.3,  

where s = |p+0.008| with p being the slope of the discharge to 

cell voltage curve.  

 
Figure 12. Slope-based weighting function on training data. 

To generalize this model for the test data, the weights of this 

method are normalized and shown in Figure 12. This maps of 

the last estimated state of charge to a weight for the voltage SoC 

estimation. Like the naïve approach, the difference between 1 

and the weight of the voltage approach is used as the weight for 

coulomb counting. 

The performance of the weighted derivative approach on the 

training data is shown below in Figure 13. 

 
Figure 13. Slope-based fusion results on training data. 

D. Extended Kalman Filter 

Note that EKF work generally followed the same process 

defined in [3] and used some code snippets from previous 

EKF work by the authors of this paper [5]. 

Since a sensor noise estimation is needed for an EKF, a 

relaxed battery pack’s voltage was measured to assess 

sensor noise. This yielded the following graph in Figure 14: 

 
Figure 14. Histogram of 300 seconds of voltage readings at steady 

state, with a normal distribution fit to it. 

The noise profile appears to be Gaussian and will be 

assumed to be for this report. Assuming zero-mean noise, this 

gives a standard deviation of σ = 0.000349. 

As is commonly done in literature [3], the states were chosen 

for the EKF as follows: 

𝑥 = [
𝑆𝑂𝐶

𝑉𝑛𝑜𝑙𝑜𝑎𝑑
] 

 

Where SOC is the estimated decimal state-of-charge of the 

battery and Vnoload is the estimated no-load voltage of each 

individual cell.  

Similarly, the following process model is used: 

𝑥𝑘 = 𝑓(𝑥𝑘−1) = [
𝑆𝑂𝐶𝑘−1 +

𝐼∆𝑡

𝑄𝑝𝑎𝑐𝑘

𝑠𝑜𝑐_𝑡𝑜_𝑣𝑜𝑙𝑡𝑎𝑔𝑒(𝑆𝑂𝐶𝑘−1)

] 

Where I is the current flowing into the pack and 

soc_to_voltage is the function, computed above, mapping an 

SoC value to an expected no-load relaxed cell voltage. 

The following sensor model is used: 

𝑧𝑘 = ℎ(𝑥𝑘) = [𝑣𝑜𝑙𝑡𝑎𝑔𝑒_𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑉𝑛𝑜𝑙𝑜𝑎𝑑 𝑘−1
)] 

Where we correct from the no-load voltage to the estimated 

“actual” voltage to compare it to the voltage reading for the 

pack. 

Using the cell model, we have the following state transition 

matrix (note that it depends on the time step): 

𝐴 = [
1 0

0 𝑒
(−

∆𝑡
𝑅𝑝𝐶

)] 

Where Rp and C are cell properties defined in the system 

identification section. 

The state observation matrix is calculated by numerically 
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differentiating the voltage estimation function around the 

previous SoC: 

𝐻 = [
𝑑

𝑑𝑆𝑂𝐶
𝑠𝑜𝑐_𝑡𝑜_𝑣𝑜𝑙𝑡𝑎𝑔𝑒 

𝑑

𝑑𝑉
𝑠𝑜𝑐_𝑡𝑜_𝑣𝑜𝑙𝑡𝑎𝑔𝑒] 

𝐻 = [
𝑑

𝑑𝑆𝑂𝐶
𝑠𝑜𝑐_𝑡𝑜_𝑣𝑜𝑙𝑡𝑎𝑔𝑒 1] 

Finally, the following sensor covariance matrix is used, 

based on the standard deviation above. 

𝑅 = [𝜎2] = [1.2199 × 10−7] 
Initially, the below covariance matrix was also used; note 

that it was tuned later to attempt to achieve better estimates. The 

current covariances are quite high as a test. 

𝑄 = [
0.005 0

0 0.8
] 

These are used in the full EKF to estimate SoC. 

On the trial run with a constant 10A discharge for about 30 

seconds, the following results in Figure 15 were obtained with 

an initial state estimate of 𝑥0 = [
0.85
3.9

]. 

 
Figure 15. EKF test results for a constant 10 A discharge. 

For the constant current training data, we have the following 

results in Figure 16: 

 
Figure 16. EKF results for the full segment discharge at constant 

current. 

This graph is similarly quite reasonable and matches 

expectations for the full discharge. However, SoC initially 

starting above 100% is a slight concern, as are the slight dips in 

the curve due to possible voltage fluctuations.  

E. Fuzzy Logic 

One major issue the other methods have trouble with is 

dealing with nonlinearities. So far, the methods presented have 

made various assumptions about the operation of the battery 

but in practice a battery system has many nonlinearities which 

can be hard to model perfectly. Using fuzzy logic, 

nonlinearities and noisy measurements are less of an issue as 

the fuzzy logic system does not need to take these into 

account. Another advantage with the fuzzy logic approach is 

that a rule set can be built around the fusion of integrated 

current and voltage measurements.  

The inputs for the fuzzy logic system are integrated current 

and the voltage of the cell after doing the adjustment 

mentioned in earlier sections. The output of the system is a 

state of charge estimate ranging from 0 to 100 percent. Three 

classes for the inputs and outputs are used: low, medium, and 

high. The membership functions and the ranges for each input 

are shown in Figure 17 and Figure 18. 

 

 
Figure 17. Fuzzy logic membership functions for the voltage 

measurement. 

 
Figure 18. Fuzzy logic membership functions for the integrated 

current membership. 

The voltage input ranges from 2.5 to 4.2V. 2.5V is the 

lowest possible voltage the segment is allowed to go to before 

damaging the segment which is why the minimum voltage is 

capped at 2.5V. Any voltage ranging from 2.5V to 3.4V is 

considered low with a membership of one. The maximum 

voltage of the segment is 4.2V, so any voltage from four volts 

to 4.2 volts is classified as high. Finally, any values between 

those bounds are considered as medium. As seen in Figure 17, 

the membership functions for the voltage input are all 

trapezoidal which is chosen for its simplicity.  

For the integrated current input, the maximum charge is 

64800 coulombs. To divide the membership functions, the 

ranges are divided by a percentage of the maximum charge. 

For example, a medium classification for integrated current 

should be around 40 to 60 percent of the maximum charge. 

Similar reasoning is used for the rest of the classifications 

where 0 to 20 percent is considered low and 80 to 100 percent 

is considered high.  
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The state of charge output the system needs to estimate is a 

continuous value. For this reason, a Sugeno fuzzy inference 

system is chosen to guarantee continuity for the output. As 

mentioned before the output can be put into one of three 

classes. The equations for each class are: 

𝑆𝑂𝐶𝑙𝑜𝑤 = 30𝑣 − 0.00001𝑐 − 71.352 

𝑆𝑂𝐶𝑚𝑒𝑑𝑖𝑢𝑚 = 40𝑣 − 0.001𝑐 − 55.6 

𝑆𝑂𝐶ℎ𝑖𝑔ℎ = 60𝑣 − 0.0001𝑐 − 152 

Where v is the voltage measurement and c is the integrated 

current measurement. To determine the weights, the training 

data of the constant current set is used to tune the weights so 

that the output of the system follows a linear trend. 

 The last piece of the fuzzy logic system is the rule set. The 

rule set of the fuzzy logic system is as follows: 

 

 
 Intuitively when the segment has not been discharged much 

(high state of charge), the integrated current measurement 

should be at a low value while the voltage measurement 

should be at a high value. When both measurements are in 

between, either one is suitable for estimating the state of 

charge which explains the structure of rule two using the 

“OR” operation. 

 Figure 19 presents the output of the fuzzy logic system on 

the same test data used in the previous methods – a constant 

current discharge cycle of 0.2C. 

 

 
Figure 19. Fuzzy logic SoC estimation results on a constant-current 

0.2C discharge cycle. 

 As expected, the estimation decreases over time and 

generally follows a linear trend. However, the output is not 

entirely linear. For example, from 12000 to 14000 seconds, 

there is a significant change in the slope. This is most likely 

due to the transition points of the fuzzy logic system when 

going from one output class to another. To improve upon this, 

additional tuning of the output function weights such as 

reducing the weight for the integrated current input can be 

done to smooth the transitions between the output classes. 

F. Result Comparisons 

To evaluate the performance of each of the methods, a test 

set of varying current is used. The current profile over time 

can be seen in Figure 20. 

The evaluation process uses anchor points in the test data 

where no current is drawn, and the cells are given time to relax 

to their equilibrium states. The SoC to voltage map in Figure 6 

is then used to get a ground truth estimate of the cell’s state of 

charge as seen in Table 1. Finally, the time at which these 

states of charges are taken is compared against each fusion 

method. 

 
Table 1. Ground truth values of state of charge for variable 

discharge cycle. 

Settled Voltage (V) Time (s) State of Charge (%) 

4.0291 652 93.5 

3.8416 1457 72.1 

3.4984 3062 32.6 

 

 
Figure 20. Graph of the discharge current over time for the full 

discharge evaluation cycle. 

Figures 21 to 24 show plots of the state of charge curves for 

the naïve implementation, weighted slope method, EKF 

implementation, and fuzzy logic method on the test data 

respectively. The results for each are then summarized in 

Table 2. 

1. If voltage is low and integrated_current is high then 
SoC is low 

2. If voltage is medium or integrated_current is 
medium then SoC is medium 

3. If voltage is high and integrated_current is low then 
SoC is high 
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1) Naïve Approach Results 

 
Figure 21. Naïve Implementation State of Charge Estimates on the 

Variable Load Test Set 

 Referencing Figure 21, the naïve approach plateaus at 

certain points and has spikes in its estimates. The change in 

state of charge estimates over time is not very smooth which 

can be attributed to the piecewise function used for the 

weighing function.  

 

2) Weighted Derivative Result 

 
Figure 22. Sloped Based Weighting Implementation State of Charge 

Estimates on the Variable Load Test Set 

Like the naïve approach, the weighted derivative approach 

does not have a perfectly smooth and continuous SoC 

estimation which can be seen in Figure 22. This is attributed to 

the voltage SoC estimation having more significance than the 

coulomb counting approach. Generally, the coulomb counting 

approach estimates SoC higher than the voltage-based method. 

This helps to smooth out large changes in the voltage based 

SoC estimate curve. By fusing the estimates, this method 

tracks the ground truth values extremely well. 

 

 

 

3) EKF Results 

The initial state chosen for the EKF is a best rough guess: 

𝑥0 = [
0.99
4.05

] 

The EKF results are shown in Figure 23. The EKF seems to 

generally underestimate the actual SoC, but when current is 

removed (at steady state), the SoC rises and approaches a quite 

good estimate, as expected. 

 
Figure 23. EKF State of Charge Estimates on the Variable Load Test 

Set 

4) Fuzzy Logic Results 

 
Figure 24. Fuzzy Logic State of Charge Estimates on the Variable 

Load Test Set 

 Like the naïve approach, the fuzzy logic estimates can be 

broken up into different regions from observing the change in 

state of charge estimates. This is most likely due to the 

different output membership functions the fuzzy logic system 

has where the transitions between the different classes are 

more visible in this case. 

 

5) Method Comparisons 

 

 From Table 2, the weighted fusion method has the greatest 

number of values that are the closest to the ground truth 

values.  
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Table 22. Results Summary of each method 

Method SoC at 652 

seconds 

SoC at 1457 

seconds 

SoC at 3062 

seconds 

Ground 

Truth 

93.5% 72.1% 32.6% 

Naïve 98% 73% 35% 

Weighted 

Fusion 

93% 73% 33% 

EKF 96.7% 68.7% 33.6% 

Fuzzy Logic 91% 79.4% 42.8% 

  

 Both the EKF and naïve implementations overestimate the 

state of charge at the beginning but as the cycle continues, the 

estimates improve. The naïve implementation performs better 

than the EKF in the middle of the cycle but overestimates the 

state of charge at the end.  

On the other hand, the fuzzy logic system seems to perform 

the worst overestimating all the state of charge values except 

for the first estimate by a significant margin.  

Finally, an important note to be made is that these 

conclusions are made on only one validation set. To get more 

rigorous results additional testing should be done with 

different load currents and segments as one method may 

perform better than another. As a final note, each method can 

be additionally tuned and optimized to improve the 

performance by collecting more training data. 

V. CONCLUSION AND RECOMMENDATIONS 

 This study evaluates four state-of-charge (SoC) estimation 

methods for lithium-ion batteries under dynamic conditions, 

using a Samsung 30Q cell. The methods assessed include a 

naïve weighted sum approach, a weighted derivative method 

based on the voltage-SoC curve, an Extended Kalman Filter 

(EKF), and fuzzy logic. 

Each method exhibits distinct advantages and drawbacks. 

The naive method offers simplicity and reasonable accuracy, 

yet it's susceptible to noise and nonlinearities. The weighted 

approach demonstrates the best performance in test data, but 

further validation is required. While the EKF provides 

reasonable estimates and handles nonlinearities better, 

undesirable transients occur in estimation curves, suggesting a 

need for model accuracy enhancement and covariance matrix 

tuning. Despite its robustness to nonlinearities and noise, the 

fuzzy logic approach underperformed, necessitating additional 

tuning and data for evaluation. 

For practical applications, the recommendation would be to 

use the EKF for the best accuracy if the only concern is to have 

extremely good readings at steady state. However, due to the 

poor transient performance of the EKF, using the weighted 

fusion method would be best if accurate SoC estimates are 

desired in all modes of operation. 
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